399 research outputs found

    Maxwell-Laman counts for bar-joint frameworks in normed spaces

    Get PDF
    The rigidity matrix is a fundamental tool for studying the infinitesimal rigidity properties of Euclidean bar-joint frameworks. In this paper we generalize this tool and introduce a rigidity matrix for bar-joint frameworks in arbitrary finite dimensional real normed vector spaces. Using this new matrix, we derive necessary Maxwell-Laman-type counting conditions for a well-positioned bar-joint framework in a real normed vector space to be infinitesimally rigid. Moreover, we derive symmetry-extended counting conditions for a bar-joint framework with a non-trivial symmetry group to be isostatic (i.e., minimally infinitesimally rigid). These conditions imply very simply stated restrictions on the number of those structural components that are fixed by the various symmetry operations of the framework. Finally, we offer some observations and conjectures regarding combinatorial characterisations of 2-dimensional symmetric, isostatic bar-joint frameworks where the unit ball is a quadrilateral.Comment: 17 page

    Symmetric isostatic frameworks with ℓ1\ell^1 or ℓ∞\ell^\infty distance constraints

    Full text link
    Combinatorial characterisations of minimal rigidity are obtained for symmetric 2-dimensional bar-joint frameworks with either ℓ1\ell^1 or ℓ∞\ell^\infty distance constraints. The characterisations are expressed in terms of symmetric tree packings and the number of edges fixed by the symmetry operations. The proof uses new Henneberg-type inductive construction schemes.Comment: 20 pages. Main theorem extended. Construction schemes refined. New titl

    Linking Rigid Bodies Symmetrically

    Full text link
    The mathematical theory of rigidity of body-bar and body-hinge frameworks provides a useful tool for analyzing the rigidity and flexibility of many articulated structures appearing in engineering, robotics and biochemistry. In this paper we develop a symmetric extension of this theory which permits a rigidity analysis of body-bar and body-hinge structures with point group symmetries. The infinitesimal rigidity of body-bar frameworks can naturally be formulated in the language of the exterior (or Grassmann) algebra. Using this algebraic formulation, we derive symmetry-adapted rigidity matrices to analyze the infinitesimal rigidity of body-bar frameworks with Abelian point group symmetries in an arbitrary dimension. In particular, from the patterns of these new matrices, we derive combinatorial characterizations of infinitesimally rigid body-bar frameworks which are generic with respect to a point group of the form Z/2Z×⋯×Z/2Z\mathbb{Z}/2\mathbb{Z}\times \dots \times \mathbb{Z}/2\mathbb{Z}. Our characterizations are given in terms of packings of bases of signed-graphic matroids on quotient graphs. Finally, we also extend our methods and results to body-hinge frameworks with Abelian point group symmetries in an arbitrary dimension. As special cases of these results, we obtain combinatorial characterizations of infinitesimally rigid body-hinge frameworks with C2\mathcal{C}_2 or D2\mathcal{D}_2 symmetry - the most common symmetry groups found in proteins.Comment: arXiv:1308.6380 version 1 was split into two papers. The version 2 of arXiv:1308.6380 consists of Sections 1 - 6 of the version 1. This paper is based on the second part of the version 1 (Sections 7 and 8

    Finite motions from periodic frameworks with added symmetry

    Get PDF
    Recent work from authors across disciplines has made substantial contributions to counting rules (Maxwell type theorems) which predict when an infinite periodic structure would be rigid or flexible while preserving the periodic pattern, as an engineering type framework, or equivalently, as an idealized molecular framework. Other work has shown that for finite frameworks, introducing symmetry modifies the previous general counts, and under some circumstances this symmetrized Maxwell type count can predict added finite flexibility in the structure. In this paper we combine these approaches to present new Maxwell type counts for the columns and rows of a modified orbit matrix for structures that have both a periodic structure and additional symmetry within the periodic cells. In a number of cases, this count for the combined group of symmetry operations demonstrates there is added finite flexibility in what would have been rigid when realized without the symmetry. Given that many crystal structures have these added symmetries, and that their flexibility may be key to their physical and chemical properties, we present a summary of the results as a way to generate further developments of both a practical and theoretic interest.Comment: 45 pages, 13 figure

    Block-diagonalized rigidity matrices of symmetric frameworks and applications

    Full text link
    In this paper, we give a complete self-contained proof that the rigidity matrix of a symmetric bar and joint framework (as well as its transpose) can be transformed into a block-diagonalized form using techniques from group representation theory. This theorem is basic to a number of useful and interesting results concerning the rigidity and flexibility of symmetric frameworks. As an example, we use this theorem to prove a generalization of the Fowler-Guest symmetry extension of Maxwell's rule which can be applied to both injective and non-injective realizations in all dimensions.Comment: 48 pages, 8 figure

    Symmetry as a sufficient condition for a finite flex

    Full text link
    We show that if the joints of a bar and joint framework (G,p)(G,p) are positioned as `generically' as possible subject to given symmetry constraints and (G,p)(G,p) possesses a `fully-symmetric' infinitesimal flex (i.e., the velocity vectors of the infinitesimal flex remain unaltered under all symmetry operations of (G,p)(G,p)), then (G,p)(G,p) also possesses a finite flex which preserves the symmetry of (G,p)(G,p) throughout the path. This and other related results are obtained by symmetrizing techniques described by L. Asimov and B. Roth in their paper `The Rigidity Of Graphs' from 1978 and by using the fact that the rigidity matrix of a symmetric framework can be transformed into a block-diagonalized form by means of group representation theory. The finite flexes that can be detected with these symmetry-based methods can in general not be found with the analogous non-symmetric methods.Comment: 26 pages, 10 figure

    Symmetry adapted Assur decompositions

    Get PDF
    Assur graphs are a tool originally developed by mechanical engineers to decompose mechanisms for simpler analysis and synthesis. Recent work has connected these graphs to strongly directed graphs, and decompositions of the pinned rigidity matrix. Many mechanisms have initial configurations which are symmetric, and other recent work has exploited the orbit matrix as a symmetry adapted form of the rigidity matrix. This paper explores how the decomposition and analysis of symmetric frameworks and their symmetric motions can be supported by the new symmetry adapted tools.Comment: 40 pages, 22 figure
    • …
    corecore